This is a review submitted to Mathematical Reviews/MathSciNet.

Reviewer Name: Konstantopoulos, Takis

Mathematical Reviews/MathSciNet Reviewer Number: 68397

Address:

Department of Mathematics Uppsala University PO Box 480 SE-75106 Uppsala SWEDEN takiskonst@gmail.com

Author: Hermon, Jonathan; Peres, Yuval

Title: The power of averaging at two consecutive time steps: proof of a mixing conjecture by Aldous and Fill.

MR Number: MR3729646

Primary classification:

Secondary classification(s):

Review text:

This paper answers a question posed by Aldous and Fill in their famous unpublished book https://www.stat.berkeley.edu/~aldous/RWG/book.pdf on Markov chains. Consider a discrete-time, irreducible and time-reversible Markov chain (X_0, X_1, \ldots) with values in a finite set with a (necessarily unique) stationary distribution π . Convergence of X_t to π as $t \to \infty, t \in \mathbb{N}$, may not be valid due to periodicity. There are many ways to tweak the chain so that convergence takes place. One is by considering the standard continuous-time chain $X_t^c := X_{N(t)}$, $t \geq 0$, where N is an independent Poisson process. Another is by replacing the transition probabilities p(i,j) by $\frac{1}{2}(\delta(i,j) + p(i,j))$, where $\delta(i,j)$ is 1 or 0 according as i = j or not; this gives the "lazy" chain X^{L} . A third one is by replacing the initial distribution μ by $\frac{1}{2}(\mu(i) + \sum_{j} \mu(j)p(j,i))$; this gives the "averaged" chain X^{ave} . These three variants have π as stationary distribution and converge to π . Let $d_c(t), d_L(t), d_{ave}(t)$ be the worst-case (with respect to the initial law) total-variation distance between π and X_t^c , X_t^L , X_t^{ave} , respectively. The Aldous-Fill conjecture is that there are functions ϕ, ψ such that $\phi(t)/t \to 1$ and $\psi(t) \to 0$, as $t \to \infty$, such that

$$d_{\text{ave}}(\phi(t)) \le \psi(d_c(t)), \quad t \ge 0$$

The paper answers this question affirmatively by explicitly prescribing the functions ϕ and ψ . It does so by providing explicit comparisons between the three total-variation distances. In addition, it is shown that if one of the chains X^c , X^L , X^{ave} exchibits cutoff then so do the others. One says that a chain X converging to a stationary distribution exhibits cutoff if there is a natural parameter n of the chain (e.g., the size of the state space) such that if $t_n(\varepsilon)$ is inverse to the total-variation distance function $d_n(t)$ then $t_n(1-\varepsilon)/t_n(\varepsilon) \to 1$ as $n \to \infty$ for all $\varepsilon > 0$. The cutoff window is $t_n(\varepsilon) - t_n(1-\varepsilon)$. It is shown that X_L and X_{ave} have smaller cutoff window than X_c if cutoff takes place. The key ingredients in the analysis are natural couplings between the above chains and a maximal inequality due to Elias Stein (1961) stating that if P is a positive self-adjoint linear operator on $L^2(\Omega, \mu)$ into itself (where $L^2(\Omega, \mu)$) is the space of μ -square-integrable functions on the probability space (Ω, μ)) with spectrum contained in the unit interval [0, 1] then

$$\|\sup_{t>0}(t+1)(P^{t+1}f - P^tf)\|_2 \le C||f||_2,$$

for some universal positive constant C.